DYNAMICAL SYMMETRY-BREAKING AND QUANTUM NONINTEGRABILITY

被引:33
作者
ZHANG, WM [1 ]
MARTENS, CC [1 ]
FENG, DH [1 ]
YUAN, JM [1 ]
机构
[1] UNIV PENN,DEPT CHEM,PHILADELPHIA,PA 19104
关键词
D O I
10.1103/PhysRevLett.61.2167
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2167 / 2170
页数:4
相关论文
共 14 条
[1]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[2]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[3]  
BARUT AO, 1987, DYNAMICAL GROUPS SPE
[4]  
Baxter J., 1982, EXACTLY SOLVED MODEL
[5]   ERGODICITY AND MIXING IN QUANTUM-THEORY .2. [J].
FEINGOLD, M ;
MOISEYEV, N ;
PERES, A .
PHYSICAL REVIEW A, 1984, 30 (01) :509-512
[6]   REGULAR AND CHAOTIC MOTION OF COUPLED ROTATORS [J].
FEINGOLD, M ;
PERES, A .
PHYSICA D, 1983, 9 (03) :433-438
[7]   DYNAMICAL PAULI EFFECTS AND THE SATURATION OF NUCLEAR COLLECTIVITY [J].
FENG, DH ;
WU, CL ;
GUIDRY, MW ;
LI, ZP .
PHYSICS LETTERS B, 1988, 205 (2-3) :156-162
[8]  
FENG DH, 1980, PHYS LETT B, V90, P327, DOI 10.1016/0370-2693(80)90940-5
[9]  
FENG DH, 1986, FEW BODY METHODS PRI, P603
[10]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M