PAULI PRINCIPLE IN EUCLIDEAN GEOMETRY

被引:13
作者
HARTUNG, RW [1 ]
机构
[1] UNIV FREIBURG,FAK PHYS,D-7800 FREIBURG,FED REP GER
关键词
D O I
10.1119/1.11635
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A macroscopic toy of Dirac and Stong shows how to detect 277- rotations in our world. A theorem in geometry shows the toy is maximal; no device in three dimensions can measure bigger angles than this toy. Assuming then that the toy correctly models motion of fermions in our world, a “hand waving” derivation of the Pauli principle follows. Finally algebra is brought in to express the geometric truth. A famous ‘sign ambiguity goes away. © 1979, American Association of Physics Teachers. All rights reserved.
引用
收藏
页码:900 / 910
页数:11
相关论文
共 20 条
[1]  
Bachmann F., 1973, GRUNDLEHREN MATH WIS, V96
[2]   KINEMATICS OF FINITE RIGID-BODY ROTATIONS REVISITED [J].
BEATTY, MF .
AMERICAN JOURNAL OF PHYSICS, 1977, 45 (10) :1006-1006
[3]  
BERNSTEIN HJ, 1969, SCI RES, V18, P33
[4]  
Biedenharn L. C., 1965, QUANTUM THEORY ANGUL
[5]   SPINOR SPANNER [J].
BOLKER, ED .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) :977-984
[6]   SPIN AND STATISTICS [J].
BROYLES, AA .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (04) :340-343
[7]  
Coxeter H.S.M., 1984, GENERATORS RELATIONS, V4th
[8]  
COXFORD AL, 1971, GEOMETRY TRANSFORMAT
[9]  
FEYNMAN RP, 1965, FEYNMAN LECT PHYSICS, V3, P4
[10]  
GOTTFRIED K, 1966, QUANTUM MECHANICS, V1, P355