QUANTUM AFFINE ALGEBRAS

被引:254
作者
CHARI, V [1 ]
PRESSLEY, A [1 ]
机构
[1] UNIV LONDON KINGS COLL,DEPT MATH,LONDON WC2R 2LS,ENGLAND
关键词
D O I
10.1007/BF02102063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify the finite-dimensional irreducible representations of the quantum affine algebra U(q)(sl2) in terms of highest weights (this result has a straightforward generalization for arbitrary quantum affine algebras). We also give an explicit construction of all such representations by means of an evaluation homomorphism U(q)(sl2) --> U(q)(sl2), first introduced by M. Jimbo. This is used to compute the trigonometric R-matrices associated to finite-dimensional representations of U(q)(sl2).
引用
收藏
页码:261 / 283
页数:23
相关论文
共 9 条
[1]   INTEGRABLE REPRESENTATIONS OF AFFINE LIE-ALGEBRAS [J].
CHARI, V .
INVENTIONES MATHEMATICAE, 1986, 85 (02) :317-335
[2]  
CHARI V, IN PRESS ENSEIGNEMEN
[3]  
Drinfeld V.G., 1988, SOV MATH DOKL, V36, P212
[4]  
Jacobson N., 1962, LIE ALGEBRAS
[5]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]  
KIRILLOV AN, 1989, INFINITE DIMENSIONAL
[8]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249
[9]  
[No title captured]