SUPPRESSORS OF TRP1 FLUORESCENCE IDENTIFY A NEW ARABIDOPSIS GENE, TRP4, ENCODING THE ANTHRANILATE SYNTHASE BETA-SUBUNIT

被引:102
作者
NIYOGI, KK
LAST, RL
FINK, GR
KEITH, B
机构
[1] MIT, DEPT BIOL, 9 CAMBRIDGE CTR, CAMBRIDGE, MA 02142 USA
[2] MIT, WHITEHEAD INST BIOMED RES, CAMBRIDGE, MA 02142 USA
[3] CORNELL UNIV, BOYCE THOMPSON INST PLANT RES, ITHACA, NY 14853 USA
[4] CORNELL UNIV, GENET & DEV SECT, ITHACA, NY 14853 USA
关键词
D O I
10.1105/tpc.5.9.1011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Suppressors of the blue fluorescence phenotype of the Arabidopsis trp1-100 mutant can be used to identify mutations in genes involved in plant tryptophan biosynthesis. Two recessive suppressor mutations define a new gene, TRP4. The trp4 mutant and the trp1-100 mutant are morphologically normal and grow without tryptophan, whereas the trp4; trp1-100 double mutant requires tryptophan for growth. The trp4; trp1-100 double mutant does not segregate at expected frequencies in genetic crosses because of a female-specific defect in transmission of the double mutant genotype, suggesting a role for the tryptophan pathway in female gametophyte development. Genetic and biochemical evidence shows that trp4 mutants are defective in a gene encoding the beta subunit of anthranilate synthase (AS). Arabidopsis AS beta subunit genes were isolated by complementation of an Escherichia coli anthranilate synthase mutation. The trp4 mutation co-segregates with one of the genes, ASB1, located on chromosome 1. Sequence analysis of the ASB1 gene from trp4-1 and trp4-2 plants revealed different single base pair substitutions relative to the wild type. Anthranilate synthase alpha and beta subunit genes are regulated coordinately in response to bacterial pathogen infiltration.
引用
收藏
页码:1011 / 1027
页数:17
相关论文
共 48 条