CENTRAL LIMIT-THEOREMS FOR STOCHASTIC-PROCESSES UNDER RANDOM ENTROPY CONDITIONS

被引:19
作者
ALEXANDER, KS [1 ]
机构
[1] UNIV WASHINGTON,DEPT STAT GN22,SEATTLE,WA 98195
关键词
D O I
10.1007/BF00318707
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:351 / 378
页数:28
相关论文
共 36 条
[1]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[2]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR SET-INDEXED PARTIAL-SUM PROCESSES WITH FINITE VARIANCE [J].
ALEXANDER, KS ;
PYKE, R .
ANNALS OF PROBABILITY, 1986, 14 (02) :582-597
[3]  
ALEXANDER KS, 1986, PROBAB TH REL FIELDS, P75
[4]  
Araujo A., 1980, CENTRAL LIMIT THEORE
[5]   FUNCTIONAL LAW OF THE ITERATED LOGARITHM AND UNIFORM CENTRAL LIMIT-THEOREM FOR PARTIAL-SUM PROCESSES INDEXED BY SETS [J].
BASS, RF ;
PYKE, R .
ANNALS OF PROBABILITY, 1984, 12 (01) :13-34
[6]   A STRONG LAW OF LARGE NUMBERS FOR PARTIAL-SUM PROCESSES INDEXED BY SETS [J].
BASS, RF ;
PYKE, R .
ANNALS OF PROBABILITY, 1984, 12 (01) :268-271
[7]  
Donsker M., 1951, MEM AM MATH SOC, V6
[8]   JUSTIFICATION AND EXTENSION OF DOOBS HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS [J].
DONSKER, MD .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :277-281
[9]  
Dudley R. M., 1974, Journal of Approximation Theory, V10, P227, DOI 10.1016/0021-9045(74)90120-8
[10]  
Dudley R. M., 1967, J FUNCTIONAL ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1