THE HENON-HEILES SYSTEM REVISITED

被引:127
作者
FORDY, AP [1 ]
机构
[1] UNIV LEEDS,CTR NONLINEAR STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
来源
PHYSICA D | 1991年 / 52卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90122-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The known integrable cases of the Henon-Heiles system are shown to be closely related to the stationary flows of the known (and only) integrable fifth-order (single component and polynomial) nonlinear evolution equations. This is further evidence that these are the only integrable cases of the Henon-Heiles system. Lax pairs are deduced for each of the integrable cases and used to construct the constants of motion. A curious Lax operator recently found by the Painleve method is explained.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 13 条
[1]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[2]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[3]  
Drinfel'd V. G., 1985, J SOV MATH, V30, P1975, DOI DOI 10.1007/BF02105860
[4]   HAMILTONIAN SYMMETRIES OF THE HENON-HEILES SYSTEM [J].
FORDY, AP .
PHYSICS LETTERS A, 1983, 97 (1-2) :21-23
[5]   FACTORIZATION OF OPERATORS .1. MIURA-TRANSFORMATIONS [J].
FORDY, AP ;
GIBBONS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (10) :2508-2510
[6]  
FUJIMOTO A, 1983, MATH JPN, V28, P43
[7]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113
[8]   A THEORY OF EXACT AND APPROXIMATE CONFIGURATIONAL INVARIANTS [J].
HALL, LS .
PHYSICA D, 1983, 8 (1-2) :90-116
[9]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[10]  
MIKHAILOV AV, 1989, SYMMETRY APPROACH CL