WEAKLY HYPERCENTRAL SUBGROUPS OF FINITE GROUPS

被引:3
作者
DYKES, DC
机构
[1] Kent State University, OH, Kent
关键词
D O I
10.2140/pjm.1969.31.337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article the study of generalized Frattini subgroups of finite groups, developed byJ. C. Beidleman and T. K. Seo, is continued. We call a proper normal subgroup H of a finite group G, a special generalized Frattini subgroup of G provided that G = NG(A) for each normal subgroup L of G and each Hall subgroup A of L such that G = HNG(A). Z. Janko proved that a subnormal subgroup K of a finite group G is Π-closed, Π is a set of primes, whenever K/(K∩Ø(G)) is Π-closed, where Ø(G) denotes the Frattini subgroup of G. We prove that a subnormal subgroup K of a finite group G is Π-closed whenever K/(K∩H) is Π-closed where H is a special generalized Frattini subgroup of G. From this result we prove that a proper normal subgroup H of a finite group G is a special generalized Frattini subgroup of G if and only if if is a weakly hypercentral subgroup of G. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:337 / &
相关论文
共 6 条
[1]   NILPOTENT CHARACTERISTIC SUBGROUPS OF FINITE GROUPS [J].
BAER, R .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (04) :633-664
[2]  
Baer R., 1957, ILLINOIS J MATH, V1, P115, DOI [10.1215/ijm/1255379396, DOI 10.1215/IJM/1255379396, 10.1215/IJM/1255379396]
[3]   GENERALIZED FRATTINI SUBGROUPS OF FINITE GROUPS [J].
BEIDLEMAN, JC ;
SEO, TK .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (03) :441-+
[4]  
Ito N., 1955, P JAPAN ACAD, V31, P327
[5]  
JANKO Z, 1962, ACTA SCI MATH SZEGED, V23, P247
[6]  
SCOTT WR, 1964, GROUP THEORY