WEIGHTED SOBOLEV-POINCARE INEQUALITIES AND POINTWISE ESTIMATES FOR A CLASS OF DEGENERATE ELLIPTIC-EQUATIONS

被引:73
作者
FRANCHI, B
机构
关键词
D O I
10.2307/2001837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a Sobolev-Poincare inequality for a class of function spaces associated with some degenerate elliptic equations. These estimates provide us with the basic tool to prove an invariant Harnack inequality for weak positive solutions. In addition, Holder regularity of the weak solutions follows in a standard way.
引用
收藏
页码:125 / 158
页数:34
相关论文
共 19 条
[1]   INEQUALITIES FOR MAXIMAL FUNCTION RELATIVE TO A METRIC [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1976, 57 (03) :297-306
[2]   HARNACKS INEQUALITY AND MEAN-VALUE INEQUALITIES FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (10) :1111-1134
[3]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[4]   DE GIORGI-MOSER THEOREM FOR A CLASS OF DEGENERATE NON-UNIFORMLY ELLIPTIC-EQUATIONS [J].
CHIARENZA, F ;
RUSTICHINI, A ;
SERAPIONI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :635-662
[5]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[6]  
Fefferman C., 1981, WADSWORTH MATH SERIE, P590
[7]  
FRANCHI B, 1985, J MATH PURE APPL, V64, P237
[8]   AN EMBEDDING THEOREM FOR SOBOLEV SPACES RELATED TO NON-SMOOTH VECTOR-FIELDS AND HARNACK INEQUALITY [J].
FRANCHI, B ;
LANCONELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (13) :1237-1264
[9]  
Franchi B., 1983, ANN SCUOLA NORM SUP, V10, P523
[10]  
Franchi B., 1987, ANN SCUOLA NORM SUP, V14, P527