VARIATIONAL AND PERTURBATIVE SCHEMES FOR A SPIKED HARMONIC-OSCILLATOR

被引:64
作者
AGUILERANAVARRO, VC
ESTEVEZ, GA
GUARDIOLA, R
机构
[1] INTER AMER UNIV,DEPT MATH & PHYS SCI,SAN GERMAN,PR 00753
[2] UNIV GRANADA,DEPT FIS MODERNA,E-18071 GRANADA,SPAIN
关键词
D O I
10.1063/1.528832
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1970, HDB MATH FNCTIONS
[2]   THE NUMEROV METHOD AND SINGULAR POTENTIALS [J].
BUENDIA, E ;
GUARDIOLA, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :561-564
[3]  
de Llano M., 1981, Revista Mexicana de Fisica, V27, P243
[4]   SUPERSINGULAR QUANTUM PERTURBATIONS [J].
DETWILER, LC ;
KLAUDER, JR .
PHYSICAL REVIEW D, 1975, 11 (06) :1436-1441
[5]   SINGULAR PERTURBATION POTENTIALS [J].
HARRELL, EM .
ANNALS OF PHYSICS, 1977, 105 (02) :379-406
[6]  
HUANG K, 1987, STATISTICAL MECHANIC, P332
[7]  
Kato Tosio, 1966, GRUNDLEHREN MATH WIS, V132
[8]   CONTINUOUS AND DISCONTINUOUS PERTURBATIONS [J].
KLAUDER, JR .
SCIENCE, 1978, 199 (4330) :735-740
[9]  
Rellich F., 1969, PERTURBATION THEORY
[10]   PROPERTIES OF WAVEFUNCTION FOR SINGULAR POTENTIALS [J].
SPECTOR, RM .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) :2357-&