ROOT CLUSTERING OF A COMPLEX MATRIX IN AN ALGEBRAIC REGION

被引:16
作者
GUTMAN, S
机构
[1] Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa
关键词
D O I
10.1109/TAC.1979.1102109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Necessary and sufficient conditions are given for the eigenvalues of a complex matrix to lie in an algebraic region of the complex plane. These conditions are in terms of rational functions of the matrix coefficients, and are given either by Kronecker product matrices or by positive definite matrices. Finally, we remark on recent results concerning root clustering in a sector. © 1979 IEEE
引用
收藏
页码:647 / 650
页数:4
相关论文
共 14 条
[1]   SIMPLE TEST FOR ZEROS OF A COMPLEX POLYNOMIAL IN A SECTOR [J].
ANDERSON, BD ;
BOSE, NK ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (04) :437-438
[2]   SIMPLIFICATION OF CERTAIN LINEAR MATRIX EQUATIONS [J].
BARNETT, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (01) :115-116
[3]  
BICKART TA, 1978, J FRANKLIN I, V304, P149
[4]   A NOTE ON EIGENVALUES OF A REAL MATRIX [J].
DAVISON, EJ ;
RAMESH, N .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (02) :252-&
[5]  
Gantmacher F., 1959, THEORY MATRICES, VI
[6]  
GUTMAN S, UNPUBLISHED
[7]  
Jury E. I., 1974, Q APPL MATH, P203
[8]   SYMMETRIC AND INNERWISE MATRICES FOR ROOT-CLUSTERING AND ROOT-DISTRIBUTION OF A POLYNOMIAL [J].
JURY, EI ;
AHN, SM .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1972, 293 (06) :433-&
[9]  
Jury EI, 1974, INNERS STABILITY DYN