SOLVING MINIMAX PROBLEMS BY INTERVAL-METHODS

被引:49
作者
ZUHE, S
NEUMAIER, A
EIERMANN, MC
机构
[1] NANJING UNIV,DEPT MATH,NANJING,PEOPLES R CHINA
[2] UNIV FREIBURG,INST ANGEW MATH,W-7800 FREIBURG,GERMANY
来源
BIT | 1990年 / 30卷 / 04期
关键词
MINIMAX PROBLEMS; INTERVAL METHODS;
D O I
10.1007/BF01933221
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interval methods are used to compute the minimax problem of a twice continuously differentiable function f(y, z), y-epsilon-R(m), z-epsilon-R(n) of m + n variables over an m + n-dimensional interval. The method provides bounds on both the minimax value of the function and the localizations of the minimax points. Numerical examples, arising in both mathematics and physics, show that the method works well.
引用
收藏
页码:742 / 751
页数:10
相关论文
共 13 条
[1]  
Basso P., 1985, SIAM J NUMER ANAL, V9, P888
[2]  
BAUMANN E, 1987, BIT, V28, P80
[3]  
Dem'yanov V. F., 1974, INTRO MINIMAX
[4]   GLOBAL OPTIMIZATION USING INTERVAL-ANALYSIS - THE MULTIDIMENSIONAL CASE [J].
HANSEN, E .
NUMERISCHE MATHEMATIK, 1980, 34 (03) :247-270
[5]   BIOLOGICAL-ACTIVITY OF TECHNICAL AROCLOR 1254 COMPARED TO AROCLOR 1254 RESIDUES - SWINE FAT RESIDUES FED TO BROILER COCKERELS [J].
HANSEN, LG ;
STRIK, JJTWA ;
KOEMAN, JH ;
KAN, CA .
TOXICOLOGY, 1981, 21 (03) :203-212
[6]   INTERVAL SLOPES FOR RATIONAL FUNCTIONS AND ASSOCIATED CENTERED FORMS [J].
KRAWCZYK, R ;
NEUMAIER, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :604-616
[7]   THE CENTERED FORM IN INTERVAL ARITHMETICS - QUADRATIC CONVERGENCE AND INCLUSION ISOTONICITY [J].
KRAWCZYK, R ;
NICKEL, K .
COMPUTING, 1982, 28 (02) :117-137
[8]  
MOORE DRE, 1979, METHODS APPLICATIONS
[9]   OVERESTIMATION IN LINEAR INTERVAL EQUATIONS [J].
NEUMAIER, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :207-214
[10]  
Neumaier A., 1990, INTERVAL METHODS SYS