DYNAMIC POLARIZABILITY OF THE DOUBLE-QUADRATIC KINK

被引:9
作者
TRULLINGER, SE
机构
[1] Department of Physics, University of Southern California, Los Angeles
关键词
D O I
10.1063/1.524458
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a simple model of ferroelectric domain walls in terms of solitary-wave (kink) solutions of the equation of motion for the double-quadratic (DQ) chain. The response of the DQ kink to an external field is calculated and a very simple expression is obtained for the dynamic polarizability of the DQ kink. The simplicity of this model makes it more attractive than the usual ø4 model for studying the interaction of ferroelectric domain walls with external electric fields. © 1980 American Institute of Physics.
引用
收藏
页码:592 / 598
页数:7
相关论文
共 21 条
  • [1] UNIFIED APPROACH TO INTERPRETATION OF DISPLACIVE AND ORDER-DISORDER SYSTEMS .2. DISPLACIVE SYSTEMS
    AUBRY, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) : 3392 - 3402
  • [2] BISHOP AR, 1978, SOLITONS CONDENSED M, V8
  • [3] NUMERICAL-SIMULATION OF SINE-GORDON SOLITON DYNAMICS IN PRESENCE OF PERTURBATIONS
    CURRIE, JF
    TRULLINGER, SE
    BISHOP, AR
    KRUMHANSL, JA
    [J]. PHYSICAL REVIEW B, 1977, 15 (12): : 5567 - 5580
  • [4] CURRIE JF, UNPUBLISHED
  • [5] DYNAMICS OF SINE-GORDON SOLITONS IN PRESENCE OF PERTURBATIONS
    FOGEL, MB
    TRULLINGER, SE
    BISHOP, AR
    KRUMHANSL, JA
    [J]. PHYSICAL REVIEW B, 1977, 15 (03): : 1578 - 1592
  • [6] FOGEL MB, 1976, PHYS REV LETT, V36, P1411, DOI 10.1103/PhysRevLett.36.1411
  • [7] FOGEL MB, 1976, PHYS LETT A, V59, P81, DOI 10.1016/0375-9601(76)90746-5
  • [8] QUANTIZATION OF NONLINEAR-WAVES
    GOLDSTONE, J
    JACKIW, R
    [J]. PHYSICAL REVIEW D, 1975, 11 (06): : 1486 - 1498
  • [9] INTERACTION OF A SOLITARY WAVE SOLUTION WITH PHONONS IN A ONE-DIMENSIONAL MODEL FOR DISPLACIVE STRUCTURAL PHASE-TRANSITIONS
    HASENFRATZ, W
    KLEIN, R
    [J]. PHYSICA A, 1977, 89 (01): : 191 - 204
  • [10] SOLITONS IN A COUPLED LINEAR-CHAIN SYSTEM
    HOROVITZ, B
    KRUMHANSL, JA
    DOMANY, E
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (14) : 778 - 781