CONTINUOUSLY GENERATED FIXED-POINTS

被引:1
作者
BRACHO, F
机构
[1] Univ Nacional Autonoma de Mexico, Mexico
关键词
Mathematical Techniques--Operators;
D O I
10.1016/0304-3975(89)90166-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fixed points are solutions to equations of the form f(x) = x. A fixed-point operator is a functional F:[D &rarr D] &rarr D such that F(f) = f(F(f)) for any f in [D &rarr D]. Fixed-point operators, like the least fixed-point operator-Y, are used to obtain solutions for recursively defined functions and domain equations. We work within the category of domains. There we characterize the fixed points of a continuous function that can be obtained via a continuous fixed-point operator: the continuously generated fixed points of f.
引用
收藏
页码:303 / 317
页数:15
相关论文
共 11 条
[1]  
Bracho F., 1980, Annales Societatis Mathematicae Polonae, Series IV: Fundamenta Informaticae, V3, P477
[2]  
BRACHO F, 1985, IIMAS SERIE NARANJA, V392
[3]  
KANDA A, 1979, LECTURE NOTES COMPUT, V74
[4]   FIXED-POINT THEOREMS AND SEMANTICS - A FOLK TALE [J].
LASSEZ, JL ;
NGUYEN, VL ;
SONENBERG, EA .
INFORMATION PROCESSING LETTERS, 1982, 14 (03) :112-116
[5]  
MANNA Z, 1975, P S THEORY COMPUTING
[6]  
MCCRACKEN NJ, 1982, UNPUB FINITARY RETRA
[7]   T-OMEGA AS A UNIVERSAL DOMAIN [J].
PLOTKIN, G .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1978, 17 (02) :209-236
[8]  
PLOTKIN G, 1972, MIPR95 U ED SCH ART
[9]  
Scott D., 1976, SIAM Journal on Computing, V5, P522, DOI 10.1137/0205037
[10]  
Scott D. S., 1972, LECT NOTES MATH, V274, P97, DOI DOI 10.1007/BFB0073967