HOW TO GUESS 2 LETTERS CORRECTLY

被引:2
作者
AHARONI, R [1 ]
HOLZMAN, R [1 ]
机构
[1] WEIZMANN INST SCI,DEPT APPL MATH & COMP SCI,IL-76100 REHOVOT,ISRAEL
关键词
D O I
10.1016/0097-3165(92)90049-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set U of functions from [k] to [n] is said to be (m, n, k)-guessing (where m, n, k are natural numbers and 2 ≤ m ≤ k) if for every function w from a subset of size m of [k] into [n] there exists a function in U coinciding with w in at least two places. Let g(m, n, k) denote the minimal size of an (m, n, k)-guessing set. We investigate the behavior of g(m, n, k), with special attention to the case m = k. © 1992.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 11 条
[1]  
Chowla S., 1960, CAN J MATH, V12, P204
[2]  
Denes J., 1974, LATIN SQUARES THEIR
[3]  
Hardy G. H, 1954, INTRO THEORY NUMBERS
[4]  
KALBFLEISCH JG, 1969, J LOND MATH SOC, V44, P60
[5]  
Katona G., 1973, PERIOD MATH HUNG, V3, P19
[6]  
Kleitman D. J., 1973, Discrete Mathematics, V6, P255, DOI 10.1016/0012-365X(73)90098-8
[7]   ON QUALITATIVELY INDEPENDENT PARTITIONS AND RELATED PROBLEMS [J].
POLJAK, S ;
PULTR, A ;
RODL, V .
DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) :193-205
[8]   ON THE MAXIMUM NUMBER OF QUALITATIVELY INDEPENDENT PARTITIONS [J].
POLJAK, S ;
TUZA, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (01) :111-116
[9]  
Poljak S., 1980, CZECH MATH J, V30, P475, DOI [10.21136/CMJ.1980.101696, DOI 10.21136/CMJ.1980.101696]
[10]  
RENYI A, 1971, F PROBABILITY