STUDY OF COMPOSITE FOAMS FOR DIVING SUITS SUBJECTED TO HIGH HYDROSTATIC-PRESSURE

被引:9
作者
OHSAWA, T
MIWA, M
GOTO, N
NAKAYAMA, A
机构
[1] Faculty of Engineering, Gifu University, Kakamigahara, Gifu Prefecture
关键词
D O I
10.1002/app.1979.070230425
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In order to obtain foams possessing flexibility and at the same time heat insulation under high hydrostatic pressure, composite foams with spherical rigid foams filled in flexible rubber foam at certain intervals were prepared and their thermal conductivity and flexural rigidity were studied. The following points were found: (1) With a unit model having a spherical rigid foam in the middle, the thermal conduction of a composite foam was analyzed under the conditions of steady one‐dimensional heat flow. Theoretical equations giving overall coefficients of heat transmission under atmospheric and hydrostatic pressures were obtained, and the adequacy of these theoretical equations was confirmed by the measurement of overall coefficients of heat transmission of composite foams in an apparatus so constructed as to allow heat conduction experiments under pressures ranging from atmospheric to the hydrostatic pressure corresponding to 100‐m depth in water. (2) The effect of the filled spherical rigid foams on heat insulation is notable under hydrostatic pressures corresponding to a 20‐m depth or more in water. Under the hydrostatic pressure corresponding to a 100‐m depth in water, the coefficient of heat insulation of the most closely filled composite foam used in the experiment was approximately 35% larger than that of the unfilled foam, while the theoretical most closely filled composite foam gives an approximately 110% increase. (3) Under the hydrostatic pressure corresponding to a 100‐m depth in water, the flexural rigidity of the most closely filled composite foam used in the experiment was approximately one half that of an unfilled foam of the same heat insulating property. Copyright © 1979 John Wiley & Sons, Inc.
引用
收藏
页码:1233 / 1245
页数:13
相关论文
共 7 条
[1]  
DOHERTY DJ, 1962, CHEM IND-LONDON, P1340
[3]  
OHNO S, 1969, JPN J ERGONOMICS, V5, P246
[4]   THEORY OF CONDUCTION OF HEAT IN FOAMED PLASTICS [J].
OKA, S ;
YAMANE, K .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1967, 6 (04) :469-&
[5]  
RUSSEL HW, 1934, S HEAT TRANSFER REFR
[6]  
Sheldon RP, 1965, POLYM GUILDFORD, V6, P205, DOI DOI 10.1016/0032-3861(65)90042-X
[7]  
WATANABE T, 1956, J SOC DOMESTIC SANIT, V30, P77