SIMILARITY REDUCTIONS OF INTEGRABLE LATTICES AND DISCRETE ANALOGS OF THE PAINLEVE-II EQUATION

被引:96
作者
NIJHOFF, FW [1 ]
PAPAGEORGIOU, VG [1 ]
机构
[1] CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
关键词
D O I
10.1016/0375-9601(91)90955-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the direct linearization method similarity reductions of integrable lattices are constructed providing discrete analogues of the Painleve II equation. The reduction is obtained by imposing an non-autonomous integrable constraint on the corresponding lattice equations, which are differential-difference analogue of the KdV and modified KdV equation. An isomonodromic deformation problem for these systems is derived. It is shown how this system in an appropriate continuum limit reduces to the PII equation.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 45 条
[1]  
ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[3]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[4]   EXACT LINEARIZATION OF A PAINLEVE TRANSCENDENT [J].
ABLOWITZ, MJ ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1977, 38 (20) :1103-1106
[5]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[6]  
ALVAREZ O, PARLPTHE9012 PREPR
[7]   ZERO-FIELD SUSCEPTIBILITY OF 2-DIMENSIONAL ISING-MODEL NEAR TC [J].
BAROUCH, E ;
MCCOY, BM ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1973, 31 (23) :1409-1411
[8]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[9]  
CAPEL HW, INS16590 PREPR
[10]  
DATE E, 1983, J PHYS SOC JPN, V52, P766, DOI 10.1143/JPSJ.52.766