3 STEPS TO CHAOS .2. A CHUA CIRCUIT PRIMER

被引:214
作者
KENNEDY, MP
机构
[1] Department of Electronic and Electrical Engineering, University College Dublin
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1993年 / 40卷 / 10期
关键词
D O I
10.1109/81.246141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Linear system theory provides an inadequate characterization of sustained oscillation in nature. In this two-part exposition of oscillation in piecewise-linear dynamical systems, we guide the reader from linear concepts and simple harmonic motion to nonlinear concepts and chaos. By means of three worked examples, we bridge the gap from the familiar parallel RLC network to exotic nonlinear dynamical phenomena in Chua's circuit. Our goal is to stimulate the reader to think deeply about the fundamental nature of oscillation and to develop intuition into the chaos-producing mechanisms of nonlinear dynamics. In order to exhibit chaos, an autonomous circuit consisting of resistors capacitors, and inductors must contain (1) at least one nonlinear element, (2) at least one locally active resistor, and (3) at least three energy-storage elements. Chua's circuit is the simplest electronic circuit that satisfies these criteria. In addition, this remarkable circuit is the only physical system for which the presence of chaos has been proved mathematically. The circuit is readily constructed at low cost using standard electronic components and exhibits a rich variety of bifurcations and chaos. In Part I of this two-part paper, we plot the evolution of our understanding of oscillation from linear concepts and the parallel RLC resonant circuit to piecewise-linear circuits and Chua's circuit. We illustrate by theory, simulation, and laboratory experiment the concepts of equilibria, stability, local and global behavior, bifurcations, and steady-state solutions. In Part II, we study bifurcations and chaos in a robust practical implementation of Chua's circuit.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 43 条
[1]  
[Anonymous], 1990, LINEAR PRODUCTS DATA
[2]  
Arnold VI, 1973, ORDINARY DIFFERENTIA
[3]   THE DOUBLE HOOK [J].
BARTISSOL, P ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (12) :1512-1522
[4]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[5]  
Chua L. O., 1987, LINEAR NONLINEAR CIR
[6]   DESIGNING NON-LINEAR SINGLE OP-AMP CIRCUITS - A COOK-BOOK APPROACH [J].
CHUA, LO ;
AYROM, F .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1985, 13 (03) :235-268
[7]   NEGATIVE-RESISTANCE DEVICES [J].
CHUA, LO ;
YU, JB ;
YU, YY .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1983, 11 (02) :161-186
[8]   CANONICAL REALIZATION OF CHUA CIRCUIT FAMILY [J].
CHUA, LO ;
LIN, GN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (07) :885-902
[9]  
CHUA LO, 1993, IEICE T FUND ELECTR, VE76A, P704
[10]  
CHUA LO, 1992, AEU-INT J ELECTRON C, V46, P250