A NO-HAIR THEOREM FOR SELF-GRAVITATING NONLINEAR SIGMA-MODELS

被引:103
作者
HEUSLER, M
机构
[1] Max-Planck-Institut für Astrophysik, D-8046 Garching bei München
关键词
D O I
10.1063/1.529899
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coupled system of gravity and mappings phi: (M,g) --> (N,G) with harmonic action and additional potential is considered. For spherically symmetric manifolds (M,g) and Riemannian manifolds (N,G) it is shown that the only static, asymptotically flat solutions of the coupled Einstein-matter equations with regular event horizon and finite energy consist of the Schwarzschild metric and a constant map, being a zero of the non-negative potential.
引用
收藏
页码:3497 / 3502
页数:6
相关论文
共 39 条
[1]   STATIC PROPERTIES OF NUCLEONS IN THE SKYRME MODEL [J].
ADKINS, GS ;
NAPPI, CR ;
WITTEN, E .
NUCLEAR PHYSICS B, 1983, 228 (03) :552-566
[2]   NO-HAIR THEOREMS FOR ABELIAN HIGGS AND GOLDSTONE MODELS [J].
ADLER, SL ;
PEARSON, RB .
PHYSICAL REVIEW D, 1978, 18 (08) :2798-2803
[3]  
[Anonymous], 1968, COMMUN MATH PHYS
[4]  
BALAKRISHNA BS, 1991, 4228482 SYR U PREPR
[5]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[6]  
BECKENSTEIN JD, 1972, PHYS REV D, V5, P2403
[7]   Harmonic surfaces in Riemann metric [J].
Bochner, S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) :146-154
[8]   NON-LINEAR SCALAR FIELD DYNAMICS IN SCHWARZSCHILD GEOMETRY [J].
BRUMBAUGH, BE .
PHYSICAL REVIEW D, 1978, 18 (04) :1335-1338
[9]  
CARTER B, 1987, NATO ASI SER B-PHYS, V156, P63
[10]   SOLITON STARS AT FINITE TEMPERATURE [J].
COTTINGHAM, WN ;
MAU, RV .
PHYSICAL REVIEW D, 1991, 44 (06) :1652-1660