L(2)-OVERBIASED, L(2)-UNDERBIASED AND L(2)-UNBIASED ESTIMATION OF TRANSFER-FUNCTIONS

被引:15
作者
DEMOOR, B
GEVERS, M
GOODWIN, GC
机构
[1] UNIV CATHOLIQUE LOUVAIN, CTR SYST ENGN & APPL MECH, B-1348 LOUVAIN, BELGIUM
[2] UNIV NEWCASTLE, DEPT ELECT ENGN & COMP SCI, CTR IND CONTROL SCI, NEWCASTLE, NSW 2308, AUSTRALIA
关键词
BIAS REDUCTION; CONSTRAINT THEORY; ESTIMATION THEORY; FREQUENCY RESPONSE; IDENTIFICATION; LEAST-SQUARES ESTIMATION; MODELING; MODEL REACTION; PARAMETER ESTIMATION;
D O I
10.1016/0005-1098(94)90179-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification of an undermodeled transfer function from input-output data is stated as a constrained optimization problem. The constraints determine the identification procedure, the residual error and whether on average the magnitude of the frequency response is L2-overbiased, L2-underbiased or L2-unbiased, as measured by a certain weighted L2-bias integral. The L2-unbiased solutions are linear combinations of L2-overbiased and L2-underbiased solutions, which are precisely the classical least squares estimates. They can be obtained from the solution of certain eigenvalue problems.
引用
收藏
页码:893 / 898
页数:6
相关论文
共 8 条
[1]   A UNIFYING THEOREM FOR LINEAR AND TOTAL LINEAR LEAST-SQUARES [J].
DEMOOR, B ;
VANDEWALLE, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (05) :563-566
[2]  
DEMOOR B, 1986, 25TH P IEEE C DEC CO, P1990
[3]  
DEMOOR B, 1988, IFAC S IDENTIFICATIO, P2017
[4]  
GEVERS M, 1990, 29TH P C DEC CONTR H, P3200
[5]  
Golub G.H., 1996, MATH GAZ, VThird
[6]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[7]  
SALGADO ME, 1990, AUTOMATICA, P97
[8]  
SWEVERS J, 1991, 1991 KATH U LEUV DEP