THE ASYMPTOTICS OF ROUSSEEUW MINIMUM VOLUME ELLIPSOID ESTIMATOR

被引:67
作者
DAVIES, L
机构
关键词
MINIMUM VOLUME ELLIPSOID; AFFINE INVARIANT METRICS; HOLDER CONDITIONS; CUBE ROOT CONVERGENCE;
D O I
10.1214/aos/1176348891
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rousseeuw's minimum volume estimator for multivariate location and dispersion parameters has the highest possible breakdown point for an affine equivariant estimator. In this paper we establish that it satisfies a local Holder condition of order 1/2 and converges weakly at the rate of n-1/3 to a non-Gaussian distribution.
引用
收藏
页码:1828 / 1843
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1972, ROBUST ESTIMATES LOC
[2]  
[Anonymous], 2003, ROBUST REGRESSION OU
[3]   THE ASYMPTOTICS OF S-ESTIMATORS IN THE LINEAR-REGRESSION MODEL [J].
DAVIES, L .
ANNALS OF STATISTICS, 1990, 18 (04) :1651-1675
[4]   AN EFFICIENT FRECHET DIFFERENTIABLE HIGH BREAKDOWN MULTIVARIATE LOCATION AND DISPERSION ESTIMATOR [J].
DAVIES, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 40 (02) :311-327
[6]  
Donoho D., 1983, FESTSCHRIFT EL LEHMA, P157
[7]  
Donoho D.L., 1982, BREAKDOWN PROPERTIES
[8]   THE LENGTH OF THE SHORTH [J].
GRUBEL, R .
ANNALS OF STATISTICS, 1988, 16 (02) :619-628
[9]  
Hample F., 1975, B INT STAT I, V46, P375
[10]  
Huber PJ., 1981, ROBUST STATISTICS