VARIATIONAL-PROBLEMS FOR MAPS OF BOUNDED VARIATION WITH VALUES IN S1

被引:36
作者
GIAQUINTA, M
MODICA, G
SOUCEK, J
机构
[1] UNIV FLORENCE, DIPARTIMENTO MATEMAT APPLICATA GIOVANNI SANSONE, I-50139 FLORENCE, ITALY
[2] CZECHOSLOVAK ACAD SCI, CS-11567 PRAGUE, CZECHOSLOVAKIA
关键词
Mathematics Subject Classification: 49Q20;
D O I
10.1007/BF02163266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to characterize the weak limits of sequences of smooth maps from a Riemannian manifold into S1. This is achieved in terms of Cartesian currents. Applications to the existence of minimizers of area type functionals in the class of maps with values in S1 satisfying Dirchlet and homological conditions are then discussed. The so called dipole problem is solved, too.
引用
收藏
页码:87 / 121
页数:35
相关论文
共 23 条
[1]  
Anzellotti G., 1978, REN SEM MAT U PADOVA, V60, P1
[2]   HARMONIC MAPS WITH DEFECTS [J].
BREZIS, H ;
CORON, JM ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :649-705
[3]  
BREZIS H, 1989, LECT NOTES MATH, V1365, P1
[4]  
DACOROGNA B, 1990, ANN I H POINCARE-AN, V7, P1
[5]  
DALMASO G, 1980, MANUSCRIPTA MATH, V30, P387
[6]  
De Giorgi E., 1955, RIC MAT, V4, P95
[7]  
De Giorgi E., 1954, ANN MAT PUR APPL, V36, P191, DOI [10.1007/BF02412838, DOI 10.1007/BF02412838]
[8]  
Federer H., 1969, GEOMETRIC MEASURE TH
[9]   VARIATIONAL-PROBLEMS ON VECTOR-BUNDLES [J].
FROHLICH, J ;
STRUWE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (03) :431-464
[10]   CARTESIAN CURRENTS, WEAK DIFFEOMORPHISMS AND EXISTENCE THEOREMS IN NONLINEAR ELASTICITY [J].
GIAQUINTA, M ;
MODICA, G ;
SOUCEK, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 106 (02) :97-159