FULLY PACKED LOOP MODEL ON THE HONEYCOMB LATTICE

被引:82
作者
BLOTE, HWJ [1 ]
NIENHUIS, B [1 ]
机构
[1] UNIV AMSTERDAM, INST THEORET FYS, 1018 XE AMSTERDAM, NETHERLANDS
关键词
D O I
10.1103/PhysRevLett.72.1372
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the O(n) model on the honeycomb lattice, using its loop representation in the limit of full packing. The universal properties, which we calculate by means of finite-size scaling and transfer-matrix techniques, are different from the branches of O(n) critical behavior known thus far. The conformal anomaly of the model varies between -1 and 2 in the interval 0 less-than-or-equal-to n less-than-or-equal-to 2. The universality class of the model is characterized as a superposition of a low-temperature O(n) phase, and a solid-on-solid model at a temperature independent of n.
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 27 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]  
[Anonymous], 1987, PHASE TRANSITIONS CR
[3]   CONFORMAL-INVARIANCE AND CRITICAL-BEHAVIOR OF THE O(N) MODEL ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
BLOTE, HWJ .
PHYSICAL REVIEW B, 1989, 39 (04) :2391-2402
[4]   CONFORMAL ANOMALY AND SCALING DIMENSIONS OF THE O(N) MODEL FROM AN EXACT SOLUTION ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
BLOTE, HWJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :138-140
[5]   BETHE-ANSATZ RESULTS FOR A SOLVABLE O(N) MODEL ON THE SQUARE LATTICE [J].
BATCHELOR, MT ;
NIENHUIS, B ;
WARNAAR, SO .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2425-2428
[6]   EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL [J].
BAXTER, RJ ;
KELLAND, SB ;
WU, FY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :397-406
[7]   Q-COLORINGS OF THE TRIANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14) :2821-2839
[8]   CHROMATIC POLYNOMIALS OF LARGE TRIANGULAR LATTICES [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15) :5241-5261
[9]   INFINITE CONFORMAL SYMMETRY OF CRITICAL FLUCTUATIONS IN 2 DIMENSIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :763-774
[10]   THE PHASE-DIAGRAM OF THE O(N) MODEL [J].
BLOTE, HWJ ;
NIENHUIS, B .
PHYSICA A, 1989, 160 (02) :121-134