FINDING THE DEPTH OF MAGNETIC BRAIN-STIMULATION - A REEVALUATION

被引:112
作者
RUDIAK, D
MARG, E
机构
来源
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY | 1994年 / 93卷 / 05期
关键词
MAGNETIC COIL; NERVE STIMULATION; ELECTRIC FIELD; MOTOR CORTEX; VOLUME CONDUCTOR; STRENGTH DURATION CURVE; (HUMAN);
D O I
10.1016/0013-4694(94)00144-A
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The depth of threshold magnetic nerve stimulation can be estimated by using thresholds from two different-sized stimulus coils and plotting their induced electric field vs. depth profiles. Stimulation is presumed to take place where the two field profiles are equal. If the two coils have unequal inductances, however, there is a relative shift in threshold between coils that alters the intersection point and the apparent stimulus depth. This systematic error arises from two sources: (1) there is a difference in the fraction of stimulator energy reaching each coil, and (2) pulse durations are different, causing threshold shifts governed by the nerve strength-duration curve. Both sources of error are additive. If the larger coil has the lesser inductance, stimulus depth is underestimated; if it has the greater inductance, it is overestimated. This can lead to large disparities in the measured depth, depending on the sets of coils used. In this paper, we show how to correct for errors introduced by unequal inductance and how this resolves discrepancies in depth measurement. Our own depth measurements in the motor area for threshold finger movements, and recalculated depths from Epstein et al., indicate that stimulation is slightly deeper (18-21 mm, average 19+ mm) than previously thought. This suggests that threshold magnetic stimulation in the motor area may arise from large, tangentially oriented fibers in the superficial white matter, or in the gray matter at the upper sulcus or lip of the gyrus.
引用
收藏
页码:358 / 371
页数:14
相关论文
共 34 条
[1]   A COMPARISON OF CORTICOSPINAL ACTIVATION BY MAGNETIC COIL AND ELECTRICAL-STIMULATION OF MONKEY MOTOR CORTEX [J].
AMASSIAN, VE ;
QUIRK, GJ ;
STEWART, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1990, 77 (05) :390-401
[2]   FOCAL STIMULATION OF HUMAN CEREBRAL-CORTEX WITH THE MAGNETIC COIL - A COMPARISON WITH ELECTRICAL-STIMULATION [J].
AMASSIAN, VE ;
CRACCO, RQ ;
MACCABEE, PJ .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1989, 74 (06) :401-416
[3]  
AMASSIAN VE, 1987, NEUROSURGERY, V20, P74
[4]  
BARKER AT, 1991, ELECTROEN CLIN NEURO, P227
[5]  
BARKER AT, 1987, NEUROSURGERY, V20, P100
[6]   DESCENDING VOLLEY AFTER ELECTRICAL AND MAGNETIC TRANSCRANIAL STIMULATION IN MAN [J].
BERARDELLI, A ;
INGHILLERI, M ;
CRUCCU, G ;
MANFREDI, M .
NEUROSCIENCE LETTERS, 1990, 112 (01) :54-58
[7]   THE STRENGTH DURATION RELATIONSHIP FOR EXCITATION OF MYELINATED NERVE - COMPUTED DEPENDENCE ON MEMBRANE PARAMETERS [J].
BOSTOCK, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 341 (AUG) :59-74
[8]   ANALYSIS OF THE DISTRIBUTION OF CURRENTS INDUCED BY A CHANGING MAGNETIC-FIELD IN A VOLUME CONDUCTOR [J].
BRANSTON, NM ;
TOFTS, PS .
PHYSICS IN MEDICINE AND BIOLOGY, 1991, 36 (02) :161-168
[9]   DEVELOPING A MORE FOCAL MAGNETIC STIMULATOR .1. SOME BASIC PRINCIPLES [J].
COHEN, D ;
CUFFIN, BN .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1991, 8 (01) :102-111
[10]   DIFFERENT SITES OF ACTION OF ELECTRICAL AND MAGNETIC STIMULATION OF THE HUMAN-BRAIN [J].
DAY, BL ;
THOMPSON, PD ;
DICK, JP ;
NAKASHIMA, K ;
MARSDEN, CD .
NEUROSCIENCE LETTERS, 1987, 75 (01) :101-106