MULTIMATRIX MODELS AND THE KP HIERARCHY

被引:9
作者
DEBOER, J
机构
[1] Institute for Theoretical Physics, 3508 TA Utrecht, Princetonplein 5
关键词
D O I
10.1016/0550-3213(91)90031-R
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the critical points of multi-matrix models. In particular we find the critical points of highest multi-criticality of the symmetric two-matrix model with an even potential. We solve the model on the sphere and show that these critical points correspond to the (p, q) minimal models with p + q = odd. Based on this experience we give a formulation of minimal models coupled to quantum gravity, in terms of differential operators, that makes the w1 + infinity constraints very transparent. This formulation provides a natural setting to study many issues, such as flows changing both p and q.
引用
收藏
页码:602 / 628
页数:27
相关论文
共 53 条
[1]   MULTIMATRIX MODEL AND 2D TODA MULTICOMPONENT HIERARCHY [J].
AHN, C ;
SHIGEMOTO, K .
PHYSICS LETTERS B, 1991, 263 (01) :44-50
[2]   MULTILOOP CORRELATORS FOR 2-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J ;
MAKEENKO, YM .
PHYSICS LETTERS B, 1990, 251 (04) :517-524
[3]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[4]  
BANKS T, RU9052 RUTG PREPR
[5]   GENUS-ONE PATH INTEGRAL IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
BERSHADSKY, M ;
KLEBANOV, IR .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3088-3091
[6]  
BERSHADSKY M, 1991, NUCL PHYS B, V360, P385
[7]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46
[8]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[9]   THE ISING-MODEL, THE YANG-LEE EDGE SINGULARITY, AND 2D QUANTUM-GRAVITY [J].
CRNKOVIC, C ;
GINSPARG, P ;
MOORE, G .
PHYSICS LETTERS B, 1990, 237 (02) :196-201
[10]   MULTICRITICAL MULTI-CUT MATRIX MODELS [J].
CRNKOVIC, C ;
MOORE, G .
PHYSICS LETTERS B, 1991, 257 (3-4) :322-328