On the Scalar Rational Interpolation Problem

被引:144
作者
Antoulas, A. C. [1 ,2 ]
Anderson, B. D. Q. [3 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77251 USA
[2] ETH, CH-8092 Zurich, Switzerland
[3] Australian Natl Univ, Dept Syst Engn, Canberra, ACT 2601, Australia
关键词
D O I
10.1093/imamci/3.2-3.61
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rational interpolation problem in the scalar case, including multiple points, is solved. In particular a parametrization of all minimal-degree rational functions interpolating given pairs of points is derived. These considerations provide a generalization of the results on the partial realization of linear systems.
引用
收藏
页码:61 / 88
页数:28
相关论文
共 15 条
[1]  
ANDERSON B. D. O., 1985, P 24 IEEE CDC FT LAU, P1468
[2]   GENERALIZED BEZOUTIAN AND SYLVESTER MATRICES IN MULTIVARIABLE LINEAR-CONTROL [J].
ANDERSON, BDO ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :551-556
[3]  
ANTOULAS A. C., 1985, IEEE T AUTOM CONTROL
[4]   LINEAR-SYSTEM REALIZATION BASED ON DATA SET REPRESENTATIONS [J].
AUDLEY, DR ;
BAUMGARTNER, SL ;
RUGH, WJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (03) :432-433
[5]  
BALL JA, 1983, INTEGR EQUAT OPER TH, V6, P804
[6]  
BELEVITCH V, 1970, PHILIPS RES REP, V25, P337
[7]   ON PARAMETRIZATIONS FOR THE MINIMAL PARTIAL-REALIZATION PROBLEM [J].
BOSGRA, OH .
SYSTEMS & CONTROL LETTERS, 1983, 3 (04) :181-187
[8]  
CHANG BC, 1984, IEEE T AUTOMAT CONTR, V29, P880, DOI 10.1109/TAC.1984.1103409
[9]   HANKEL AND LOEWNER MATRICES [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :75-95
[10]  
Kalman R.E., 1979, ACTA POLYTECH SCAND, V31, P9