RANDOM SPACE-FILLING-TILING - FRACTAL PROPERTIES AND KINETICS

被引:18
作者
BRILLIANTOV, NV
KRAPIVSKY, PL
ANDRIENKO, YA
机构
[1] POTSDAM UNIV,MAX PLANCK AG NICHTLINEARE DYNAM,D-14415 POTSDAM,GERMANY
[2] BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215
[3] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 11期
关键词
D O I
10.1088/0305-4470/27/11/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A kinetic version of random Apollonian packing model is introduced. In this model, droplets nucleate spontaneously, grow at a uniform rate and stop growing upon collisions. The fractal dimension, D(f) of the pore space is found to be equal to D(f) = d(1 - exp[2 - (2d+2 -2)/(d + 2)]), a result which is confirmed exactly in ID and numerically in 2D.
引用
收藏
页码:L381 / L386
页数:6
相关论文
共 18 条