PRINCIPAL COVARIATES REGRESSION .1. THEORY

被引:100
作者
DEJONG, S [1 ]
KIERS, HAL [1 ]
机构
[1] UNIV GRONINGEN,DEPT PSYCHOL,9712 TS GRONINGEN,NETHERLANDS
关键词
D O I
10.1016/0169-7439(92)80100-I
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for multivariate regression is proposed that is based on the simultaneous least-squares minimization of Y residuals and X residuals by a number of orthogonal X components. By lending increasing weight to the X variables relative to the Y variables, the procedure moves from ordinary least-squares regression to principal component regression, forming a relatively simple alternative for continuum regression. Analogies and differences with this and other biased regression techniques are discussed. Possible extensions to multi-block problems and nonlinear relationships are indicated.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 38 条
[1]  
CARROLL JD, 1968, 76TH P ANN CONV AM P, V3, P227
[2]  
CLEMENTI S, 1989, Journal of Chemometrics, V3, P499, DOI 10.1002/cem.1180030307
[3]  
COXE KL, 1986, ENCY STAT SCI, V7, P181
[4]  
DEJONG S, 1991, MIKROCHIM ACTA, V2, P93
[5]   SIMULTANEOUS LINEAR PREDICTION [J].
FORTIER, JJ .
PSYCHOMETRIKA, 1966, 31 (03) :369-369
[6]  
FRANK IE, 1989, LCS105 STANF U DEP S
[7]  
FRISCH R, 1934, STATISTICAL CONFLUEN
[8]  
Gifi A., 1990, NONLINEAR MULTIVARIA
[9]  
Gunst R., 1980, REGRESSION ANAL ITS, DOI 10.1201/9780203741054
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&