APPROXIMATE CLOSEST-POINT QUERIES IN HIGH DIMENSIONS

被引:41
作者
BERN, M
机构
[1] Xerox Corporation, Palo Alto Research Center, Palo Alto
关键词
COMPUTATIONAL GEOMETRY; DATA STRUCTURES; PATTERN MATCHING; CLOSEST-POINT QUERIES; QUADTREES;
D O I
10.1016/0020-0190(93)90222-U
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given n points in d dimensions, we show how to construct a data structure of space O(d2(d)n) that approximately answers closest-point queries in time O(d2d log n). The returned point is at most O(d1/2) times further from the query point than the true closest point. We also show how to construct a data structure of space O(dn log m), that-with high probability-can answer a sequence of m closest-point queries in time O(d log n log m) per query, with approximation ratio O(d3/2). Our data structures are based on quadtrees.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 8 条
[1]   OPTIMAL EXPECTED-TIME ALGORITHMS FOR CLOSEST POINT PROBLEMS [J].
BENTLEY, JL ;
WEIDE, BW ;
YAO, AC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (04) :563-580
[2]  
Dobkin D., 1976, SIAM Journal on Computing, V5, P181, DOI 10.1137/0205015
[3]  
Finkel R. A., 1974, Acta Informatica, V4, P1, DOI 10.1007/BF00288933
[4]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[5]  
SAMET H, 1984, ACM COMPUT SURV, V16, P188
[6]  
Samet H, 1990, DESIGN ANAL SPATIAL, P191, DOI 10.1007/3-540-52208-5_28
[7]   AN O(N LOG N) ALGORITHM FOR THE ALL-NEAREST-NEIGHBORS PROBLEM [J].
VAIDYA, PM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (02) :101-115
[8]  
YAO AC, 1985, 17TH P ANN ACM S THE, P163