Fluorescence energy transfer is potentially a useful technique for obtaining structural and dynamic information on duplex and branched DNA molecules suitably labeled with donor and acceptor dyes. We have assessed the accuracy and limitations of FET measurements in nucleic acids with respect to the localization of the dyes and the flexibility of the dye-DNA linkages. A nine base-pair duplex oligonucleotide was synthesized with donor and acceptor dyes linked at the opposing 5' termini by alkyl chains. A careful analysis of the fluorescence decay of the donor revealed that the donor-acceptor distance in this molecule was not well defined, but was described by a rather broad distribution. The mean donor-acceptor distance and the distribution of distances have been recovered from the donor decay. Orientational effects on energy transfer have been included in the analysis. The implications of these findings for FET measurements in nucleic acids are considered.