STRUCTURAL-PROPERTIES OF MINIMAX CONTROLLERS FOR A CLASS OF DIFFERENTIAL-GAMES ARISING IN NONLINEAR H-INFINITY CONTROL

被引:23
作者
DIDINSKY, G
BASAR, T
BERNHARD, P
机构
[1] UNIV ILLINOIS,DECIS & CONTROL LAB,URBANA,IL 61801
[2] UNIV ILLINOIS,ORGANOELEMENT CPDS LAB,URBANA,IL 61801
[3] UNIV ILLINOIS,DEPT ELECT & COMP ENGN,URBANA,IL 61801
[4] INRIA SOPHIA ANTIPOLIS,F-06902 SOPHIA ANTIPOLIS,FRANCE
基金
美国国家科学基金会;
关键词
H-INFINITY CONTROL; DIFFERENTIAL GAMES; CERTAINTY EQUIVALENCE; NONLINEAR SYSTEMS; MINIMAX CONTROLLERS;
D O I
10.1016/0167-6911(93)90048-B
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces, in precise mathematical terms, two properties (named, certainty equivalence and generalized certainty equivalence) that nonlinear minimax controller problems might possess. The certainty equivalence is a generalization of the one introduced earlier by Basar and Bernhard (1991) and Bernhard (1990), which applies to problems where the 'worst-case disturbance' may not be unique (but the worst-case state trajectory is). The generalized certainty equivalence, on the other hand, extends this to accommodate nonunique worst-case state trajectories, and leads to the construction of controllers that guarantee a bounded upper value for the underlying game. The paper also shows that for a large class of games (and under certain conditions), certainty-equivalent (as well as generalized certainty-equivalent) controllers admit (infinite-dimensional) estimator (Kalman-filter) structures, where the estimator gain depends on the state of the estimator.
引用
收藏
页码:433 / 441
页数:9
相关论文
共 7 条
[1]  
Basar T, 1982, DYNAMIC NONCOOPERATI
[2]  
BERNHARD P, 1990, INRIA1347 REP
[3]  
Bernhard P., 1991, HINFINITYOPTIMAL CON
[4]  
Danskin J.M., 1967, THEORY MAX MIN
[5]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[6]   DISTURBANCE ATTENUATION AND H-INFINITY-CONTROL VIA MEASUREMENT FEEDBACK IN NONLINEAR-SYSTEMS [J].
ISIDORI, A ;
ASTOLFI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1283-1293
[7]   ON A STATE-SPACE APPROACH TO NONLINEAR H-INFINITY CONTROL [J].
VANDERSCHAFT, AJ .
SYSTEMS & CONTROL LETTERS, 1991, 16 (01) :1-8