AN UPPER BOUND FOR WEIL EXPONENTIAL-SUMS OVER GALOIS RINGS AND APPLICATIONS

被引:99
作者
KUMAR, PV
HELLESETH, T
CALDERBANK, AR
机构
[1] UNIV BERGEN,DEPT INFORMAT,N-5020 BERGEN,NORWAY
[2] AT&T BELL LABS,MATH SCI RES CTR,MURRAY HILL,NJ 07974
基金
美国国家科学基金会;
关键词
EXPONENTIAL SUMS; GALOIS RINGS; WEIL BOUND; CARLITZ-UCHIYAMA BOUND; SEQUENCE DESIGN; POLYPHASE SEQUENCES;
D O I
10.1109/18.370147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an analog of the well-known Weil-Carlitz-Uchiyama upper bound for exponential sums over finite fields for exponential sums over Galois rings. Some examples are given where the bound is tight. The bound has immediate application to the design of large families of phase-shift-keying sequences having low correlation and an alphabet of size p(e), p prime, e greater than or equal to 2. Some new constructions of eight-phase sequences are provided.
引用
收藏
页码:456 / 468
页数:13
相关论文
共 27 条
[1]   A NEW CLASS OF CYCLIC CODES [J].
ANDERSON, DR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :181-&
[2]   A NOTE ON COMPLEX SEQUENCES WITH LOW CORRELATIONS [J].
BLAKE, IF ;
MARK, JW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) :814-816
[3]   4-PHASE SEQUENCES WITH NEAR-OPTIMUM CORRELATION-PROPERTIES [J].
BOZTAS, S ;
HAMMONS, R ;
KUMAR, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) :1101-1113
[4]  
CALDERBANK AR, 1994, UNPUB DES CODES CRYP
[5]  
CARLITZ L, 1957, DUKE MATH, P37
[6]  
Chevalley Claude, 1963, MATH SURVEYS, VVI
[7]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[8]   ON THE COVERING RADIUS OF CYCLIC LINEAR CODES AND ARITHMETIC CODES [J].
HELLESETH, T .
DISCRETE APPLIED MATHEMATICS, 1985, 11 (02) :157-173
[9]  
KOBLITZ N, 1977, GRADUATE TEXTS MATH, V58
[10]   PRIME-PHASE SEQUENCES WITH PERIODIC CORRELATION-PROPERTIES BETTER THAN BINARY SEQUENCES [J].
KUMAR, PV ;
MORENO, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (03) :603-616