DATA-ANALYSIS FOR QUANTUM MONTE-CARLO SIMULATIONS WITH THE NEGATIVE-SIGN PROBLEM

被引:8
作者
HATANO, N
机构
[1] Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku
关键词
QUANTUM MONTE-CARLO SIMULATION; NEGATIVE-SIGN PROBLEM; DATA ANALYSIS;
D O I
10.1143/JPSJ.63.1691
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Methods of analyzing data of quantum Monte Carlo simulations with the negative-sign problem are studied. It is pointed out that naive data analyses yield an overestimated statistical error or a quite unstable result. Two proper ways of analyzing the data are presented.
引用
收藏
页码:1691 / 1697
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1993, QUANTUM MONTE CARLO
[2]   The distribution of the index in a normal bivariate population. [J].
Fieller, EC .
BIOMETRIKA, 1932, 24 :428-440
[3]   MINUS SIGN PROBLEM IN THE MONTE-CARLO SIMULATION OF LATTICE FERMION SYSTEMS [J].
FURUKAWA, N ;
IMADA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :810-824
[4]   The frequency distribution of the quotient of two normal variates [J].
Geary, RC .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1930, 93 :442-446
[5]   REPRESENTATION BASIS IN QUANTUM MONTE-CARLO CALCULATIONS AND THE NEGATIVE-SIGN PROBLEM [J].
HATANO, N ;
SUZUKI, M .
PHYSICS LETTERS A, 1992, 163 (04) :246-249
[6]   TRANSFER-MATRIX CALCULATIONS OF THE SPIN 1/2 ANTIFERROMAGNETIC XXZ MODEL ON THE 4X2 TRIANGULAR LATTICE USING THE FRACTAL DECOMPOSITION [J].
HATANO, N ;
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (03) :481-492
[7]  
HINKLEY DV, 1970, BIOMETRIKA, V57, P683
[8]   ON RATIO OF 2 CORRELATED NORMAL RANDOM VARIABLES [J].
HINKLEY, DV .
BIOMETRIKA, 1969, 56 (03) :635-&
[9]   MONTE-CARLO SIMULATIONS OF ONE-DIMENSIONAL FERMION SYSTEMS [J].
HIRSCH, JE ;
SUGAR, RL ;
SCALAPINO, DJ ;
BLANKENBECLER, R .
PHYSICAL REVIEW B, 1982, 26 (09) :5033-5055
[10]  
KENDALL M, 1977, ADV THEORY STAT, V1, P263