ROTATING PLANE-FRONTED WAVES AND THEIR POINCARE-INVARIANT DIFFERENTIAL GEOMETRY

被引:5
作者
URBANTKE, H
机构
[1] Institut für Theoretische Physik, Universität Wien
关键词
D O I
10.1063/1.524302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
After reviewing the rotating plane-fronted wave type solutions of the scalar wave equation and Maxwell's vacuum equations in flat space (we point out that there are Yang-Mill analogs as well), we study their Poincaré- invariant geometry by discussing their characteristic differential invariants and a noninertial curvilinear coordinate system canonically associated with them. In one of the appendices we treat the shearfree and the nondiverging null hypersurfaces in complex Minkowski space, in another one we derive the Yang-Mills version of Robinson's theorem on null electromagnetic fields. © 1979 American Institute of Physics.
引用
收藏
页码:1851 / 1860
页数:10
相关论文
共 20 条
[1]   NON-ABELIAN PLANE-WAVES [J].
COLEMAN, S .
PHYSICS LETTERS B, 1977, 70 (01) :59-60
[2]   SOLUTIONS OF EINSTEIN AND EINSTEIN-MAXWELL EQUATIONS [J].
DEBNEY, GC ;
KERR, RP ;
SCHILD, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) :1842-+
[3]  
DUSCHEK A, 1958, HOHERE MATH, V2, P361
[4]  
ERGUIN NP, 1948, 15 LEN STAT U UCH ZA
[5]  
FRIEDLANDER FG, 1947, P CAMB PHILOS SOC, V43, P360
[6]   SPACE-TIME CALCULUS BASED ON PAIRS OF NULL DIRECTIONS [J].
GEROCH, R ;
HELD, A ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :874-881
[7]  
GUVEN R, UNPUBLISHED
[8]   ANOTHER INTERPRETATION OF OPTICAL SCALARS [J].
KANTOWSK.R .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (02) :336-&
[9]  
Koshlyakov N. S., 1964, DIFFERENTIAL EQUATIO
[10]   PLANE-FRONTED GRAVITATIONAL WAVES [J].
KUNDT, W .
ZEITSCHRIFT FUR PHYSIK, 1961, 163 (01) :77-&