3-DIMENSIONAL GREENS-FUNCTION FOR FLUID-LOADED THIN ELASTIC CYLINDRICAL-SHELL - FORMULATION AND SOLUTION

被引:34
作者
FELSEN, LB
HO, JM
LU, IT
机构
[1] Department of Electrical Engineering/Computer Science, Weber Research Institute, Polytechnic University, Farmingdale
关键词
D O I
10.1121/1.398925
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper treats sound radiation from a time-harmonic point pressure source located either inside or outside a thin, homogeneous, infinitely long circular cylindrical elastic shell, which is immersed in different interior and exterior fluid media. This Green's function problem is attacked by a combination of the method of separation of variables and the method of images applied to an infinitely extended azimuthal (Φ) domain. The reduced one-dimensional problems in the cylindrical (r,Φ, z) coordinates are solved by general spectral techniques in terms of one-dimensional characteristic Green's functions gr, gΦgzwhich depend on one or both of the two complex spectral separation parameters (spatial wavenumbers) A1and A2. While the one-dimensional problems in the Φ and z domains are straightforward, the presence of the shell in the radial domain introduces substantial complexity. The solution is obtained by defining the discontinuities in the pressure and normal displacement across the shell via recourse to the dynamical equations of motion inside the shell. The synthesis problem is made unique through a complete analysis of the spectral singularities of gr>4>z in their respective complex planes, which permits selection of appropriate integration contours. A host of alternative representations, whose choice (concerning utility) is motivated by the parameter range of interest, can be derived from the fundamental spectral form. This is addressed in a companion paper [Felsen et al, J. Acoust. Soc. Am. 87, 554–569 (1990) ], which also treats asymptotic reductions that lead to a variety of ray acoustic and other fundamental wave processes. © 1990, Acoustical Society of America. All rights reserved.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 16 条
[2]   SCATTERING OF SOUND-WAVES BY SMOOTH CONVEX ELASTIC CYLINDRICAL-SHELLS [J].
BOROVIKOV, VA ;
VEKSLER, ND .
WAVE MOTION, 1985, 7 (02) :143-152
[3]   GABOR REPRESENTATION AND APERTURE THEORY [J].
EINZIGER, PD ;
RAZ, S ;
SHAPIRA, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (04) :508-522
[4]   GEOMETRICAL-THEORY OF DIFFRACTION, EVANESCENT WAVES, COMPLEX RAYS AND GAUSSIAN BEAMS [J].
FELSEN, LB .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1984, 79 (01) :77-88
[5]   3-DIMENSIONAL GREENS-FUNCTION FOR FLUID-LOADED THIN ELASTIC CYLINDRICAL-SHELL - ALTERNATIVE REPRESENTATIONS AND RAY ACOUSTIC FORMS [J].
FELSEN, LB ;
HO, JM ;
LU, IT .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (02) :554-569
[6]   RAY TREATMENT OF WAVE-PROPAGATION ON THIN-WALLED CURVED ELASTIC PLATES WITH TRUNCATIONS [J].
FELSEN, LB ;
LU, IT .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1989, 86 (01) :360-374
[7]  
Felsen Leopold B., 1994, RAD SCATTERING WAVES, V31
[8]  
FRIEDMAN B, 1956, PRINCIPLES TECHNIQUE, P213
[9]  
JUNGER MC, 1986, SOUND STRUCTURES THE, pCH7
[10]  
LORCH ER, 1962, SPECTRAL THEORY, pCH4