BINDING OF ATOMS AND STABILITY OF MOLECULES IN HARTREE AND THOMAS-FERMI TYPE THEORIES .4. BINDING OF NEUTRAL SYSTEMS FOR THE HARTREE MODEL

被引:35
作者
CATTO, I
LIONS, PL
机构
[1] Ceremade, Université Paris-Dauphine, Place de Lattre de Tassigny
关键词
D O I
10.1080/03605309308820967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is the fourth of a series devoted to the study of the stability of general molecular systems in Thomas-Fermi or Hartree type models. In the preceding part, we proved the binding of arbitrary neutral systems for Thomas-Fermi type theories and of planar neutral systems for the Hartree model. In this part, we manage to get rid of this restriction and thus, prove the binding and the stability of arbitrary neutral systems for the Hartree model.
引用
收藏
页码:1149 / 1159
页数:11
相关论文
共 27 条
[1]   FORMATION OF STABLE MOLECULES WITHIN STATISTICAL THEORY OF ATOMS [J].
BALAZS, NL .
PHYSICAL REVIEW, 1967, 156 (01) :42-&
[2]   INEQUALITIES FOR POTENTIALS OF PARTICLE-SYSTEMS [J].
BAXTER, JR .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (04) :645-652
[3]  
Benguria, 1979, THESIS PRINCETON U
[4]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   MINIMUM ACTION SOLUTIONS OF SOME VECTOR FIELD-EQUATIONS [J].
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :97-113
[7]  
CATTO I, 1990, CR ACAD SCI I-MATH, V311, P193
[8]  
CATTO I, IN PRESS CPDE
[9]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[10]  
GOGNY D, 1984, RAIRO M2 AN, V20, P571