THE INSTABILITY OF SOME GRADIENT METHODS FOR ILL-POSED PROBLEMS

被引:30
作者
EICKE, B [1 ]
LOUIS, AK [1 ]
PLATO, R [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,STR 17 JUNI 135,W-1000 BERLIN 12,GERMANY
关键词
Subject classifications: AMS(MOS): 65J10; CR:; G1.8;
D O I
10.1007/BF01385614
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the solution of linear ill-posed problems some gradient methods like conjugate gradients and steepest descent have been examined previously in the literature. It is shown that even though these methods converge in the case of exact data their instability makes it impossible to base a-priori parameter choice regularization methods upon them. © 1990 Springer-Verlag.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 1972, APPROXIMATE SOLUTION
[2]  
BRAKHAGE H, 1986, P ALPINE US SEMINAR, P165
[3]  
DANIEL J. W., 1967, SIAM J NUMER ANAL, V4, P10
[4]  
Engl H. W., 1981, Numerical Functional Analysis and Optimization, V3, P201, DOI 10.1080/01630568108816087
[5]   REGULARIZING ALGORITHMS BASED ON THE CONJUGATE-GRADIENT METHOD [J].
GILYAZOV, SF .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (01) :8-13
[6]  
GILYAZOV SF, 1977, MOSCOW U COMPUT MATH, V1, P8
[7]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[9]  
Louis A. K., 1989, INVERSE SCHLECHT GES
[10]  
LOUIS AK, 1986, P ALPINE US SEMINAR, P177