ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS

被引:90
作者
ALESSANDRINI, G [1 ]
MAGNANINI, R [1 ]
机构
[1] UNIV FLORENCE,DIPARTIMENTO MATEMAT,I-50121 FLORENCE,ITALY
关键词
EIGENVALUE PROBLEMS; GEOMETRIC PROPERTIES OF ELLIPTIC EQUATIONS; CRITICAL POINTS; INVERSE CONDUCTIVITY PROBLEMS;
D O I
10.1137/S0036141093249080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Stekloff eigenvalue problem (1.1) has a countable number of eigenvalues {p(n)}n=1,2,..., each of finite multiplicity. In this paper the authors give an upper estimate, in terms of the integer n, of the multiplicity of p(n), and the number of critical points and of nodal domains of the eigenfunctions corresponding to p(n). In view of a possible application to inverse conductivity problems, the result for the general case of elliptic equations with discontinuous coefficients in divergence form is proven by replacing the classical concept of critical point with the more suitable notion of geometric critical point.
引用
收藏
页码:1259 / 1268
页数:10
相关论文
共 23 条
[1]   SYMMETRY AND NONSYMMETRY FOR THE OVERDETERMINED STEKLOFF EIGENVALUE PROBLEM [J].
ALESSANDRINI, G ;
MAGNANINI, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (01) :44-52
[2]  
Alessandrini G, 1992, ANN SCUOLA NORM SU S, V19, P567
[3]  
Alessandrini G., 1987, ANN SCUOLA NORM-SCI, V14, P229
[4]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[5]   STABILITY FOR AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
BELLOUT, H ;
FRIEDMAN, A ;
ISAKOV, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (01) :271-296
[6]  
BERGMAN S, 1953, KERNEL FUNCTIONS DIF
[7]  
BERS L, 1955, CONVEGNO INT SULLE E
[8]   EIGENFUNCTIONS AND NODAL SETS [J].
CHENG, SY .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) :43-55
[9]   SLOSHING FREQUENCIES [J].
FOX, DW ;
KUTTLER, JR .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1983, 34 (05) :668-696
[10]  
GILBARG D, 1983, ELLIPTIC PARTIAL DIF