CHECKING ROBUST NONSINGULARITY IS NP-HARD

被引:146
作者
POLJAK, S
ROHN, J
机构
[1] Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Praha 1, 118 00
关键词
ROBUSTNESS; NP-COMPLETE PROBLEMS; ROBUST NONSINGULARITY; INTERVAL MATRICES;
D O I
10.1007/BF01213466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the following problem: given k + 1 square matrices with rational entries, A0, A1, ..., A(k), decide if A0 + r1A1 + ... + r(k)A(k) is nonsingular for all possible choices of real numbers r1, ..., r(k), in the interval [0, 1]. We show that this question, which is closely related to the robust stability problem, is NP-hard. The proof relies on the new concept of radius of nonsingularity of a square matrix and on the relationship between computing this radius and a graph-theoretic problem.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 16 条
[1]   A SOLVABLE CASE OF QUADRATIC 0-1 PROGRAMMING [J].
BARAHONA, F .
DISCRETE APPLIED MATHEMATICS, 1986, 13 (01) :23-26
[2]   MINIMIZATION OF +/-1 MATRICES UNDER LINE SHIFTS [J].
BROWN, TA ;
SPENCER, JH .
COLLOQUIUM MATHEMATICUM, 1971, 23 (01) :165-&
[3]  
DEIF AS, 1986, SENSITIVITY ANAL LIN
[4]  
DELORME C, 1990, 599 U PAR SUD TECHN
[5]  
DEZA M, IN PRESS MATH PROGRA, V56
[6]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[7]  
Erdos P., 1974, PROBABILISTIC METHOD
[8]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[9]   COMPLEXITY OF PARTIAL SATISFACTION [J].
LIEBERHERR, KJ ;
SPECKER, E .
JOURNAL OF THE ACM, 1981, 28 (02) :411-421
[10]  
MANSOUR M, 1989, 28TH P IEEE C DEC CO, P46