STRUCTURE OF EIGENFUNCTIONS IN TERMS OF CLASSICAL TRAJECTORIES IN AN SU(3) SCHEMATIC SHELL-MODEL

被引:32
作者
LEBOEUF, P [1 ]
SARACENO, M [1 ]
机构
[1] COMIS NACL ENERGIA ATOM, DEPT FIS, RA-1429 BUENOS AIRES, DF, ARGENTINA
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 09期
关键词
D O I
10.1103/PhysRevA.41.4614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Husimi distribution for the eigenstates of a classically nonintegrable two-dimensional system with mixed phase space was calculated in order to analyze its structure in terms of classical trajectories. Besides eigenfunctions concentrated on invariant tori or with support on chaotic regions of phase space, we also found others that combine different classical invariant sets (like a stable and an unstable periodic orbit) and families of eigenstates scarred by classically unstable periodic orbits. © 1990 The American Physical Society.
引用
收藏
页码:4614 / 4624
页数:11
相关论文
共 28 条
[1]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[2]   PERIODIC TRAJECTORIES FOR A TWO-DIMENSIONAL NONINTEGRABLE HAMILTONIAN [J].
BARANGER, M ;
DAVIES, KTR .
ANNALS OF PHYSICS, 1987, 177 (02) :330-358
[3]   EXTENDED CHAOS AND DISAPPEARANCE OF KAM TRAJECTORIES [J].
BENSIMON, D ;
KADANOFF, LP .
PHYSICA D, 1984, 13 (1-2) :82-89
[4]   QUANTUM SCARS OF CLASSICAL CLOSED ORBITS IN PHASE-SPACE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 423 (1864) :219-231
[5]  
BERRY MV, 1989, IN PRESS P LES HOUCH
[6]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[7]   BIFURCATIONS OF PERIODIC TRAJECTORIES IN NON-INTEGRABLE HAMILTONIAN-SYSTEMS WITH 2-DEGREES OF FREEDOM - NUMERICAL AND ANALYTICAL RESULTS [J].
DEAGUIAR, MAM ;
MALTA, CP ;
BARANGER, M ;
DAVIES, KTR .
ANNALS OF PHYSICS, 1987, 180 (02) :167-205
[8]   SCARS OF SYMMETRIES IN QUANTUM CHAOS [J].
DELANDE, D ;
GAY, JC .
PHYSICAL REVIEW LETTERS, 1987, 59 (16) :1809-1812
[9]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[10]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518