CONVERGENCE RATES OF THE STRONG LAW FOR STATIONARY MIXING SEQUENCES

被引:23
作者
HIPP, C
机构
[1] Mathematisches Institut der Universität, Köln, D-5000
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 49卷 / 01期
关键词
D O I
10.1007/BF00534340
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we improve a theorem of Lai on the convergence rate in the Marcinkiewicz-Zygmund strong law for stationary mixing sequences. © 1979 Springer-Verlag.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 15 条
[1]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[2]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[3]   CONVERGENCE OF DISTRIBUTIONS GENERATED BY STATIONARY STOCHASTIC PROCESSES [J].
DAVYDOV, YA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (04) :691-&
[4]   NOTE ON EMPIRICAL PROCESSES OF STRONG-MIXING SEQUENCES [J].
DEO, CM .
ANNALS OF PROBABILITY, 1973, 1 (05) :870-875
[5]  
DVORETSKY A, 1972, 6TH P BERK S MATH ST, V2, P513
[6]   ON A THEOREM OF HSU AND ROBBINS [J].
ERDOS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :286-291
[7]   PROBABILITIES OF MODERATE DEVIATIONS FOR SOME STATIONARY PHI-MIXING PROCESSES [J].
GHOSH, M ;
BABU, GJ .
ANNALS OF PROBABILITY, 1977, 5 (02) :222-234
[8]  
Ibragimov I., 1971, INDEPENDENT STATIONA
[9]  
Ibragimov IA., 1962, TEOR VEROJATNOST PRI, V7, P349, DOI [10.1137/1107036, DOI 10.1137/1107036]
[10]  
JOGESHBABU G, 1978, 40 IND STAT I STAT M