CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME .2. CENTRAL EXTENSIONS

被引:20
作者
JANSSEN, T
JANNER, A
ASCHER, E
机构
[1] Instituut voor Theoretische Fysika, Katholieke Universiteit, Nijmegen
[2] Battelle Institute, Advanced Studies Center, Genève
来源
PHYSICA | 1969年 / 42卷 / 01期
关键词
D O I
10.1016/0031-8914(69)90086-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As space groups may be obtained from extensions of a free abelian group by a finite group, the extension conditions, given for abelian groups by M. Hall, are worked out in more detail for central extensions by groups isomorphic to Euclidean point groups. For four-dimensional point groups which are (3 + 1)-reducible over R these conditions are explicitly given. For extensions of Zn a knowledge of these conditions is not necessary. For these extensions a simple method to determine all non-equivalent extensions is given. The analogy of this method to a method by Zassenhaus is explained by the isomorphism of H2φ(K, Zn) and H2φ(K, Rn/Zn). Also the determination of isomorphism classes of extensions is discussed. © 1969.
引用
收藏
页码:41 / &
相关论文
共 10 条
[1]  
ASCHER E, 1965, HELV PHYS ACTA, V38, P551
[2]  
ASCHER E, TO BE PUBLISHED
[3]  
Curtis C.W., 1962, REPRESENTATION THEOR
[4]  
FAST G, NONEQUIVALENT 4 DIME
[5]   Group rings and extensions. I [J].
Hall, M .
ANNALS OF MATHEMATICS, 1938, 39 :220-234
[6]  
HALL M, 1959, THEORY GROUPS
[7]  
Henry N.F.M., 1952, INT TABLES XRAY CRYS, V1
[8]   CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME .I. GENERAL DEFINITIONS AND BASIC PROPERTIES [J].
JANSSEN, T ;
JANNER, A ;
ASCHER, E .
PHYSICA, 1969, 41 (04) :541-&
[9]   On a theorem of Marshall Hall [J].
Magnus, W .
ANNALS OF MATHEMATICS, 1939, 40 :764-768
[10]  
Zassenhaus Hans, 1948, COMMENT MATH HELV, V21, P117