MOBIUS, MELLIN, AND MATHEMATICAL PHYSICS

被引:13
作者
NINHAM, BW
HUGHES, BD
FRANKEL, NE
GLASSER, ML
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
[2] UNIV MELBOURNE,SCH PHYS,PARKVILLE,VIC 3052,AUSTRALIA
[3] CLARKSON UNIV,DEPT PHYS,POTSDAM,NY 13676
[4] CLARKSON UNIV,DEPT MATH & COMP SCI,POTSDAM,NY 13676
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/0378-4371(92)90210-H
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine some results and techniques of analytic number theory which have application, or potential application, in mathematical physics. We consider inversion formulae for lattice sums, various transformations of infinite series and products, functional equations and scaling relations, with selected applications in electrostatics and statistical mechanics. In the analysis, the Mellin transform and the Riemann zeta function play a key role.
引用
收藏
页码:441 / 481
页数:41
相关论文
共 60 条
[1]   THE INTRINSIC CURVATURE OF SOLIDS [J].
ANDERSSON, S ;
HYDE, ST ;
VONSCHNERING, HG .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1984, 168 (1-4) :1-17
[2]  
ANDREWS GE, 1988, RAMANUJAN REVISITED
[3]  
[Anonymous], 1958, INTRO FOURIER ANAL G
[4]  
Ayoub R., 1963, INTRO ANAL THEORY NU
[5]  
Barbashov B. M., 1990, INTRO RELATIVISTIC S
[6]  
BARNES IS, 1990, THESIS AUSTR NATIONA
[7]  
BARNES IS, 1990, J PHYS PARIS S, V23
[8]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[9]  
Bellman R., 1961, BRIEF INTRO THETA FU
[10]  
Berlin Isaiah, 1978, RUSSIAN THINKERS SEL, P22