SCHOENBERG EXPONENTIAL EULER SPLINE CURVES

被引:16
作者
JETTER, K [1 ]
RIEMENSCHNEIDER, SD [1 ]
SIVAKUMAR, N [1 ]
机构
[1] UNIV ALBERTA,DEPT MATH,EDMONTON T6G 2G1,ALBERTA,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0308210500028869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exponential Euler spline curves of Schoenberg are used to derive the correctness of cardinal interpolation by shifted univariate B-splines and the "metric condition" on the bi-infinite Toeplitz matrix of interpolation. Additional monotonicity properties of the associated symbol for interpolation in each of its parameters are also given.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 9 条
[1]  
de Boor C., 1976, LECT NOTES MATH, V501, P1
[2]   CARDINAL SPLINE INTERPOLANT TO EIUT [J].
DEBOOR, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (06) :930-941
[3]  
Micchelli Ch., 1976, STUDIES SPLINE FUNCT, P203
[4]  
Norlund N.E., 1924, VORLESUNGEN DIFFEREN
[5]  
Schoenberg I. J., 1972, LINEAR OPERATORS APP, P382
[6]  
Schoenberg I. J., 1969, J APPROX THEORY, V2, P167, DOI DOI 10.1016/0021-9045(69)90040-9
[7]   A NEW APPROACH TO EULER SPLINES [J].
SCHOENBERG, IJ .
JOURNAL OF APPROXIMATION THEORY, 1983, 39 (04) :324-337
[8]  
Schoenberg IJ, 1973, CARDINAL SPLINE INTE
[9]   QUASI-INTERPOLANTS FROM SPLINE INTERPOLATION OPERATORS [J].
SMITH, PW ;
WARD, JD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) :97-110