TOPOLOGY OF CLOSED RANDOM POLYGONS

被引:27
作者
DEGUCHI, T
TSURUSAKI, K
机构
[1] Department of Physics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku
关键词
D O I
10.1143/JPSJ.62.1411
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the topology of random walks using derivatives of the Jones polynomial. We enumerate formation probabilities of nontrivial knots 3(1), 4(1), 5(1) and 5(2) in closed Gaussian random walks.
引用
收藏
页码:1411 / 1414
页数:4
相关论文
共 30 条
[1]  
Bar-Natan D., 1992, VASSILIEV KNOT INVAR
[2]  
BIRMAN JS, 1992, KNOT POLYNOMIAL VASS
[3]  
Burde G., 1985, KNOTS
[4]  
CLOIZEAUX JD, 1979, J PHYS-PARIS, V40, P665
[5]  
CONWAY JH, 1969, COMPUTATIONAL PROBLE, P329
[6]  
Dean F.B., 1985, J BIOL CHEM, V260, P4795
[7]   A NEW ALGORITHM FOR NUMERICAL-CALCULATION OF LINK INVARIANTS [J].
DEGUCHI, T ;
TSURUSAKI, K .
PHYSICS LETTERS A, 1993, 174 (1-2) :29-37
[8]  
DEGUCHI T, 1993, UNPUB POLYNOMIAL TIM
[9]  
Delbr M., 1962, PROC S APPL MATH, V14, P55
[10]  
DIAO Y, 1992, RANDOM KNOTS