PERTURBATION EXPANSIONS THROUGH FUNCTIONAL INTEGRALS FOR NON-LINEAR SYSTEMS

被引:12
作者
LANGOUCHE, F [1 ]
ROEKAERTS, D [1 ]
TIRAPEGUI, E [1 ]
机构
[1] CATHOLIC UNIV LOUVAIN,INST PHYS THEOR,B-1348 LOUVAIN LA NEUVE,BELGIUM
来源
PHYSICAL REVIEW D | 1979年 / 20卷 / 02期
关键词
D O I
10.1103/PhysRevD.20.433
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently the perturbation theory for nonlinear systems was studied in detail by Leschke et al. using operator methods. We study and generalize their results in the functional integral formalism. Methods introduced in our previous work are generalized to include, in particular, normal and antinormal orderings of noncommuting operators. © 1979 The American Physical Society.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 13 条
[2]   HAMILTONIAN OPERATORS VIA FEYNMAN PATH INTEGRALS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (11) :3296-&
[3]   PATH INTEGRALS AND ORDERING RULES [J].
DOWKER, JS .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (10) :1873-1874
[4]  
DOWKER JS, 1975, 1974 P INT C FUNCT I
[5]  
Faddeev L., 1976, METHODS FIELD THEORY
[6]   DISCRETIZATION PROBLEMS OF FUNCTIONAL INTEGRALS IN PHASE-SPACE [J].
LANGOUCHE, F ;
ROEKAERTS, D ;
TIRAPEGUI, E .
PHYSICAL REVIEW D, 1979, 20 (02) :419-432
[7]   FUNCTIONAL INTEGRAL METHODS FOR STOCHASTIC FIELDS [J].
LANGOUCHE, F ;
ROEKAERTS, D ;
TIRAPEGUI, E .
PHYSICA A, 1979, 95 (02) :252-274
[8]  
LANGOUCHE F, UNPUBLISHED
[9]   DYSON-WICK EXPANSIONS FOR NON-LINEAR BOSE SYSTEMS [J].
LESCHKE, H ;
HIRSHFELD, AC ;
SUZUKI, T .
PHYSICS LETTERS A, 1978, 67 (02) :87-89
[10]   OPERATOR ORDERINGS AND FUNCTIONAL FORMULATIONS OF QUANTUM AND STOCHASTIC DYNAMICS [J].
LESCHKE, H ;
SCHMUTZ, M .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 27 (01) :85-94