QUASI-CLASSICAL LIMIT OF QUANTUM SCATTERING THEORY

被引:20
作者
YAJIMA, K [1 ]
机构
[1] SWISS FED INST TECHNOL,MATH RES INST,CH-8092 ZURICH,SWITZERLAND
关键词
D O I
10.1007/BF01221443
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quasi-classical limit of the quantum mechanical scattering operator for non-relativistic simple scattering system. The connection between the quantum mechanical and classical mechanical scattering theories is obtained by considering the asymptotic behavior as h{combining short stroke overlay} → 0 of the quantum mechanical scattering operator on the state exp(-ip·a/h{combining short stroke overlay})f(p) in the momentum representation. © 1979 Springer-Verlag.
引用
收藏
页码:101 / 129
页数:29
相关论文
共 15 条
[1]  
Agmon S., 1975, ANN SCUOLA NORM-SCI, V2, P151
[2]  
Asada K., 1978, JAP J MATH, V4, P299
[3]   SCATTERING INTO CONES .I. POTENTIAL SCATTERING [J].
DOLLARD, JD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (03) :193-&
[4]  
FUJIWARA D, J ANAL MATH
[5]   CLASSICAL LIMIT FOR QUANTUM-MECHANICAL CORRELATION-FUNCTIONS [J].
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) :265-277
[6]  
HEPP K, UNPUBLISHED
[7]   CLASSICAL SCATTERING WITH LONG-RANGE FORCES [J].
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (03) :193-214
[8]   EXISTENCE OF WAVE OPERATORS IN SCATTERING THEORY [J].
HORMANDER, L .
MATHEMATISCHE ZEITSCHRIFT, 1976, 146 (01) :69-91
[9]   FOURIER INTEGRAL OPERATORS .1. [J].
HORMANDER, L .
ACTA MATHEMATICA UPPSALA, 1971, 127 (1-2) :79-+
[10]  
HUNZIKER W, 1968, COMMUN MATH PHYS, V8, P283