ON THE JOINT DISTRIBUTION OF LADDER VARIABLES OF RANDOM-WALK

被引:14
作者
DONEY, RA [1 ]
GREENWOOD, PE [1 ]
机构
[1] UNIV BRITISH COLUMBIA,DEPT MATH,VANCOUVER V6T 1Y4,BC,CANADA
关键词
D O I
10.1007/BF01192558
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The ladder time N and ladder height H of a random walk {S(n), n greater-than-or-equal-to 1} as a pair (N, H) lie in the domain of attraction of a bivariate stable law if S1 is in a domain of attraction, as was shown by Greenwood et al. (1982). In this paper we prove a converse. If P(S(n) > 0) converges and (N, H) lies in a bivariate domain of attraction then S1 is also in a domain of attraction.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 26 条
[1]  
Bingham N. H., 1989, REGULAR VARIATION
[2]   FLUCTUATION THEORY IN CONTINUOUS TIME [J].
BINGHAM, NH .
ADVANCES IN APPLIED PROBABILITY, 1975, 7 (04) :705-766
[3]  
Darling D.A., 1956, T AM MATH SOC, V83, P164
[5]   SPITZER CONDITION FOR ASYMPTOTICALLY SYMMETRIC RANDOM-WALK [J].
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1980, 17 (03) :856-859
[6]   NOTE ON A CONDITION SATISFIED BY CERTAIN RANDOM-WALKS [J].
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :843-849
[7]   A BIVARIATE LOCAL LIMIT-THEOREM [J].
DONEY, RA .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (01) :95-102
[8]  
EMBRECHTS P, 1982, J AUST MATH SOC A, V32, P412, DOI 10.1017/S1446788700024976
[9]  
EMERY DJ, 1975, VERW GEB, V31, P125
[10]  
Feller W., 1966, INTRO PROBABILITY TH, VII