CHVATAL CLOSURES FOR MIXED INTEGER PROGRAMMING-PROBLEMS

被引:152
作者
COOK, W
KANNAN, R
SCHRIJVER, A
机构
[1] CARNEGIE MELLON UNIV,DEPT COMP SCI,PITTSBURGH,PA 15213
[2] MATH CENTRUM,1098 SJ AMSTERDAM,NETHERLANDS
关键词
D O I
10.1007/BF01580858
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Chvátal introduced the idea of viewing cutting planes as a system for proving that every integral solution of a given set of linear inequalities satisfies another given linear inequality. This viewpoint has proven to be very useful in many studies of combinatorial and integer programming problems. The basic ingredient in these cutting-plane proofs is that for a polyhedron P and integral vector w, if max(wx|x ∈ P, wx integer} =t, then wx ≤ t is valid for all integral vectors in P. We consider the variant of this step where the requirement that wx be integer may be replaced by the requirement that {Mathematical expression} be integer for some other integral vector {Mathematical expression}. The cutting-plane proofs thus obtained may be seen either as an abstraction of Gomory's mixed integer cutting-plane technique or as a proof version of a simple class of the disjunctive cutting planes studied by Balas and Jeroslow. Our main result is that for a given polyhedron P, the set of vectors that satisfy every cutting plane for P with respect to a specified subset of integer variables is again a polyhedron. This allows us to obtain a finite recursive procedure for generating the mixed integer hull of a polyhedron, analogous to the process of repeatedly taking Chvátal closures in the integer programming case. These results are illustrated with a number of examples from combinatorial optimization. Our work can be seen as a continuation of that of Nemhauser and Wolsey on mixed integer cutting planes. © 1990 The Mathematical Programming Society, Inc.
引用
收藏
页码:155 / 174
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 1954, OPERATIONS RES, DOI DOI 10.1287/OPRE.2.4.393
[2]  
Balas E., 1979, ANN DISCRETE MATH, V5, P3
[3]   FACETS OF THE BIPARTITE SUBGRAPH POLYTOPE [J].
BARAHONA, F ;
GROTSCHEL, M ;
MAHJOUB, AR .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (02) :340-358
[4]  
BARANY I, 1984, MATH PROGRAM STUD, V22, P32, DOI 10.1007/BFb0121006
[5]   CYCLIC SCHEDULING VIA INTEGER PROGRAMS WITH CIRCULAR ONES [J].
BARTHOLDI, JJ ;
ORLIN, JB ;
RATLIFF, HD .
OPERATIONS RESEARCH, 1980, 28 (05) :1074-1085
[6]   CONSTRUCTIVE CHARACTERIZATIONS OF THE VALUE-FUNCTION OF A MIXED-INTEGER PROGRAM .1. [J].
BLAIR, CE ;
JEROSLOW, RG .
DISCRETE APPLIED MATHEMATICS, 1984, 9 (03) :217-233
[7]  
BLAIR CE, 1985, DISCRETE APPLIED MAT, V10, P211
[8]   ON THE UNCAPACITATED PLANT LOCATION PROBLEM .1. VALID INEQUALITIES AND FACETS [J].
CHO, DC ;
JOHNSON, EL ;
PADBERG, M ;
RAO, MR .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (04) :579-589
[9]  
Chvatal V., 1973, Mathematical Programming, V5, P29, DOI 10.1007/BF01580109
[10]  
Chvatal V., 1973, Discrete Mathematics, V4, P305, DOI 10.1016/0012-365X(73)90167-2