EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR HAMILTONIAN LATTICES

被引:93
作者
FLACH, S [1 ]
机构
[1] BOSTON UNIV, DEPT PHYS, BOSTON, MA 02215 USA
关键词
D O I
10.1103/PhysRevE.51.1503
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider time-periodic nonlinear localized excitations (NLE's) on one-dimensional translationally invariant Hamiltonian lattices with an arbitrary finite interaction range and an arbitrary finite number of degrees of freedom per unit cell. We analyze a mapping of the Fourier coefficients of the NLE solution. NLE's correspond to homoclinic points in the phase space of this map. Using dimensionality properties of separatrix manifolds of mapping we show the persistence of NLE solutions under perturbations of the system, provided that the NLE's exist for the given system. For a class of nonintegrable Fermi-Pasta-Ulam chains, we rigorously prove the existence of NLE solutions. © 1995 The American Physical Society.
引用
收藏
页码:1503 / 1507
页数:5
相关论文
共 18 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]   THE CONCEPT OF ANTIINTEGRABILITY APPLIED TO DYNAMICAL-SYSTEMS AND TO STRUCTURAL AND ELECTRONIC MODELS IN CONDENSED MATTER PHYSICS [J].
AUBRY, S .
PHYSICA D, 1994, 71 (1-2) :196-221
[3]  
Campbell D., 1990, CHAOS SOVIET AM PERS
[4]   NONPERSISTENCE OF BREATHER FAMILIES FOR THE PERTURBED SINE-GORDON EQUATION [J].
DENZLER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (02) :397-430
[5]   ASYMPTOTIC EXPANSIONS AND QUALITATIVE-ANALYSIS OF FINITE-DIMENSIONAL MODELS IN NONLINEAR FIELD-THEORY [J].
ELEONSKII, VM ;
KULAGIN, NE ;
NOVOZHILOVA, NS ;
SILIN, VP .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 60 (03) :896-902
[6]  
FISCHER F, 1993, ANN PHYS-LEIPZIG, V2, P296, DOI 10.1002/andp.19935050308
[7]   LOCALIZED EXCITATIONS IN 2-DIMENSIONAL HAMILTONIAN LATTICES [J].
FLACH, S ;
KLADKO, K ;
WILLIS, CR .
PHYSICAL REVIEW E, 1994, 50 (03) :2293-2303
[8]   INTEGRABILITY AND LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S ;
WILLIS, CR ;
OLBRICH, E .
PHYSICAL REVIEW E, 1994, 49 (01) :836-850
[9]   CONDITIONS ON THE EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S .
PHYSICAL REVIEW E, 1994, 50 (04) :3134-3142
[10]   MOVABILITY OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS - A SEPARATRIX PROBLEM [J].
FLACH, S ;
WILLIS, CR .
PHYSICAL REVIEW LETTERS, 1994, 72 (12) :1777-1781