DIRECT VARIATIONAL SOLUTIONS TO THE GRAD-SCHLUTER-SHAFRANOV EQUATION

被引:11
作者
LUDWIG, GO [1 ]
机构
[1] INST NACL PESQUISAS ESPACIAIS,BR-12201970 S JOSE CAMPOS,SP,BRAZIL
关键词
D O I
10.1088/0741-3335/37/6/003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A direct variational method based on an energy principle is applied to obtain approximate magnetohydrodynamic equilibria for tokamak plasmas. The geometry of the nested magnetic flux surfaces is specified by a model that includes displacement, elongation and triangularity effects. The radial dependence in flux coordinates is described by a consistent set of trial functions which allows analytical calculation of the flux-surface averaged internal energy density of the plasma. Approximate solutions of the variational problem are obtained for arbitrary aspect-ratio tokamaks using a one-parameter optimization procedure.
引用
收藏
页码:633 / 646
页数:14
相关论文
共 10 条
[1]   SOME NEW VARIATIONAL PROPERTIES OF HYDROMAGNETIC EQUILIBRIA [J].
GRAD, H .
PHYSICS OF FLUIDS, 1964, 7 (08) :1283-1292
[2]  
GRAD H, 1958, 2 P INT C PEAC US, V31, P190
[3]  
KHAIT VD, 1980, SOV J PLASMA PHYS, V6, P476
[4]   EQUILIBRIUM OF A MAGNETICALLY CONFINED PLASMA IN A TOROID [J].
KRUSKAL, MD ;
KULSRUD, RM .
PHYSICS OF FLUIDS, 1958, 1 (04) :265-274
[5]   VARIATIONAL MOMENT SOLUTIONS TO THE GRAD-SHAFRANOV EQUATION [J].
LAO, LL ;
HIRSHMAN, SP ;
WIELAND, RM .
PHYSICS OF FLUIDS, 1981, 24 (08) :1431-1441
[6]  
LUST R, 1957, Z NATURFORSCH A, V12, P85
[7]  
SHAFRANOV VD, 1958, ZH EKSP TEOR FIZ, V6, P545
[8]  
WEITZNER H, 1981, PHYS FLUIDS, V24, P1431
[9]  
ZHAKHAROV LE, 1986, REV PLASMA PHYSICS, V11, P153
[10]  
1992, MATHEMATICA